**MATH1000. Mathematics at Northeastern. (1 Hour)**

Designed for freshman math majors to introduce them to one another, their major, their college, and the University. Students are introduced to our advising system, register for next semester’s courses, and learn more about co-op. Also helps students develop the academic and interpersonal skills necessary to succeed as a university student.

**MATH1120. Precalculus. (4 Hours)**

Focuses on linear, polynomial, exponential, logarithmic, and trigonometric functions. Emphasis is placed on understanding, manipulating, and graphing these basic functions, their inverses and compositions, and using them to model real-world situations (that is, exponential growth and decay, periodic phenomena). Equations involving these functions are solved using appropriate techniques. Special consideration is given to choosing reasonable functions to fit numerical data.

**MATH1130. College Math for Business and Economics. (4 Hours)**

Introduces students to some of the important mathematical concepts and tools (such as modeling revenue, cost and profit with functions) used to solve problems in business and economics. Assumes familiarity with the basic properties of linear, polynomial, exponential, and logarithmic functions. Topics include the method of least squares, regression curves, solving equations involving functions, compound interest, amortization, and other consumer finance models. (Graphing calculator required, see instructor for make and model.)

**MATH1213. Interactive Mathematics. (4 Hours)**

Develops problem-solving skills while simultaneously teaching mathematics concepts. Each unit centers on a particular applied problem, which serves to introduce the relevant mathematical topics. These may include but are not limited to polling theory, rate of change, the concepts behind derivatives, probability, binomial distributions, and statistics. The course is not taught in the traditional lecture format and is particularly suited to students who work well in collaborative groups and who enjoy writing about the concepts they are learning. Assessment is based on portfolios, written projects, solutions to “problems of the week,” and exams.

**Attribute(s): ** NUpath Analyzing/Using Data, NUpath Formal/Quant Reasoning

**MATH1215. Mathematical Thinking. (4 Hours)**

Focuses on the development of mathematical thinking and its use in a variety of contexts to translate real-world problems into mathematical form and, through analysis, to obtain new information and reach conclusions about the original problems. Mathematical topics include symbolic logic, truth tables, valid arguments, counting principles, and topics in probability theory such as Bayes’ theorem, the binomial distribution, and expected value.

**Attribute(s): ** NUpath Analyzing/Using Data, NUpath Formal/Quant Reasoning

**MATH1216. Recitation for MATH 1215. (0 Hours)**

Provides small-group discussion format to cover material in MATH1215.

**MATH1220. Mathematics of Art. (4 Hours)**

Presents mathematical connections and foundations for art. Topics vary and may include aspects of linear perspective and vanishing points, symmetry and patterns, tilings and polygons, Platonic solids and polyhedra, golden ratio, non-Euclidean geometry, hyperbolic geometry, fractals, and other topics. Includes connections and examples in different cultures.

**Attribute(s): ** NUpath Creative Express/Innov, NUpath Formal/Quant Reasoning

**MATH1231. Calculus for Business and Economics. (4 Hours)**

Provides an overview of differential calculus including derivatives of power, exponential, logarithmic, logistic functions, and functions built from these. Derivatives are used to model rates of change, to estimate change, to optimize functions, and in marginal analysis. The integral calculus is applied to accumulation functions and future value. Emphasis is on realistic business and economics problems, the development of mathematical models from raw business data, and the translation of mathematical results into verbal expression appropriate for the business setting. Also features a semester-long marketing project in which students gather raw data, model it, and use calculus to make business decisions; each student is responsible for a ten-minute presentation. (Graphing calculator required, see instructor for make and model.)

**Attribute(s): ** NUpath Formal/Quant Reasoning

**MATH1241. Calculus 1. (4 Hours)**

Serves as both the first half of a two-semester calculus sequence and as a self-contained one-semester course in differential and integral calculus. Introduces basic concepts and techniques of differentiation and integration and applies them to polynomial, exponential, log, and trigonometric functions. Emphasizes the derivative as rate of change and integral as accumulator. Applications include optimization, growth and decay, area, volume, and motion.

**Attribute(s): ** NUpath Formal/Quant Reasoning

**MATH1242. Calculus 2. (4 Hours)**

Continues MATH1241. Introduces additional techniques of integration and numerical approximations of integrals and the use of integral tables; further applications of integrals. Also introduces differential equations and slope fields, and elementary solutions. Introduces functions of several variables, partial derivatives, and multiple integrals.

**Prerequisite(s): **MATH1231 with a minimum grade of D- or MATH1241 with a minimum grade of D- or MATH1341 with a minimum grade of D-

**Attribute(s): ** NUpath Formal/Quant Reasoning

**MATH1245. Calculus with Applications. (4 Hours)**

Covers differential and integral calculus of one variable and an introduction to differential equations. Includes applications that show how calculus is used to solve problems in science. Also includes a group project related to a real-world problem in students' areas of study. The project involves a differential equation and compares the solution with experiment. Previous examples of projects include modeling of coral reefs, analysis of an epidemic using the data of the World Health Organization, analysis of a two-component kinetic model of drug concentration, and gate analysis of hip to knee experiment and comparison with the solution of the pendulum equation. Prior exposure to high-school-level calculus is recommended.

**Attribute(s): ** NUpath Formal/Quant Reasoning

**MATH1251. Calculus and Differential Equations for Biology 1. (4 Hours)**

Begins with the fundamentals of differential calculus and proceeds to the specific type of differential equation problems encountered in biological research. Presents methods for the solutions of these equations and how the exact solutions are obtained from actual laboratory data. Topics include differential calculus: basics, the derivative, the rules of differentiation, curve plotting, exponentials and logarithms, and trigonometric functions; using technology to understand derivatives; biological kinetics: zero- and first-order processes, processes tending toward equilibrium, bi- and tri-exponential processes, and biological half-life; differential equations: particular and general solutions to hom*ogeneous and nonhom*ogeneous linear equations with constant coefficients, systems of two linear differential equations; compartmental problems: nonzero initial concentration, two-compartment series dilution, diffusion between compartments, population dynamics; and introduction to integration.

**Attribute(s): ** NUpath Formal/Quant Reasoning

**MATH1252. Calculus and Differential Equations for Biology 2. (4 Hours)**

Continues MATH1251. Begins with the integral calculus and proceeds quickly to more advanced topics in differential equations. Introduces linear algebra and uses matrix methods to analyze functions of several variables and to solve larger systems of differential equations. Advanced topics in reaction kinetics are covered. The integral and differential calculus of functions of several variables is followed by the study of numerical methods in integration and solutions of differential equations. Provides a short introduction to probability. Covers Taylor polynomials and infinite series. Special topics include reaction kinetics: Michaelis-Menten processes, tracer experiments, and inflow and outflow through membranes.

**Prerequisite(s): **MATH1251 with a minimum grade of D-

**Attribute(s): ** NUpath Formal/Quant Reasoning

**MATH1260. Math Fundamentals for Games. (4 Hours)**

Discusses linear algebra and vector geometry in two-, three-, and four-dimensional space. Examines length, dot product, and trigonometry. Introduces linear and affine transformations. Discusses complex numbers in two-space, cross product in three-space, and quaternions in four-space. Provides explicit formulas for rotations in three-space. Examines functions of one argument and treats exponentials and logarithms. Describes parametric curves in space. Discusses binomials, discrete probability, Bézier curves, and random numbers. Concludes with the concept of the derivative, the rules for computing derivatives, and the notion of a differential equation.

**Attribute(s): ** NUpath Formal/Quant Reasoning

**MATH1340. Intensive Calculus for Engineers. (6 Hours)**

Contains the material from the first semester of MATH1341, preceded by material emphasizing the strengthening of precalculus skills. Topics include properties of exponential, logarithmic, and trigonometric functions; differential calculus; and introductory integral calculus.

**Attribute(s): ** NUpath Formal/Quant Reasoning

**MATH1341. Calculus 1 for Science and Engineering. (4 Hours)**

Covers definition, calculation, and major uses of the derivative, as well as an introduction to integration. Topics include limits; the derivative as a limit; rules for differentiation; and formulas for the derivatives of algebraic, trigonometric, and exponential/logarithmic functions. Also discusses applications of derivatives to motion, density, optimization, linear approximations, and related rates. Topics on integration include the definition of the integral as a limit of sums, antidifferentiation, the fundamental theorem of calculus, and integration by substitution.

**Attribute(s): ** NUpath Formal/Quant Reasoning

**MATH1342. Calculus 2 for Science and Engineering. (4 Hours)**

Covers further techniques and applications of integration, infinite series, and introduction to vectors. Topics include integration by parts; numerical integration; improper integrals; separable differential equations; and areas, volumes, and work as integrals. Also discusses convergence of sequences and series of numbers, power series representations and approximations, 3D coordinates, parameterizations, vectors and dot products, tangent and normal vectors, velocity, and acceleration in space. Requires prior completion of MATH1341 or permission of head mathematics advisor.

**Attribute(s): ** NUpath Formal/Quant Reasoning

**MATH1365. Introduction to Mathematical Reasoning. (4 Hours)**

Covers the basics of mathematical reasoning and problem solving to prepare incoming math majors for more challenging mathematical courses at Northeastern. Focuses on learning to write logically sound mathematical arguments and to analyze such arguments appearing in mathematical books and courses. Includes fundamental mathematical concepts such as sets, relations, and functions.

**MATH1990. Elective. (1-4 Hours)**

Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

**MATH2201. History of Mathematics. (4 Hours)**

Traces the development of mathematics from its earliest beginning to the present. Emphasis is on the contributions of various cultures including the Babylonians, Egyptians, Mayans, Greeks, Indians, and Arabs. Computations and constructions are worked out using the techniques and notations of these peoples. The role of mathematics in the development of science is traced throughout, including the contributions of Descartes, Kepler, Fermat, and Newton. More modern developments are discussed as time permits.

**Attribute(s): ** NUpath Formal/Quant Reasoning, NUpath Interpreting Culture

**MATH2280. Statistics and Software. (4 Hours)**

Provides an introduction to basic statistical techniques and the reasoning behind each statistical procedures. Covers appropriate statistical data analysis methods for applications in health and social sciences. Also examines a statistical package such as SPSS or SAS to implement the data analysis on computer. Topics include descriptive statistics, elementary probability theory, parameter estimation, confidence intervals, hypothesis testing, nonparametric inference, and analysis of variance and regression with a minimum of mathematical derivations.

**Attribute(s): ** NUpath Analyzing/Using Data

**MATH2321. Calculus 3 for Science and Engineering. (4 Hours)**

Extends the techniques of calculus to functions of several variables; introduces vector fields and vector calculus in two and three dimensions. Topics include lines and planes, 3D graphing, partial derivatives, the gradient, tangent planes and local linearization, optimization, multiple integrals, line and surface integrals, the divergence theorem, and theorems of Green and Stokes with applications to science and engineering and several computer lab projects. Requires prior completion of MATH1342 or MATH1252.

**Attribute(s): ** NUpath Formal/Quant Reasoning

**MATH2322. Recitation for MATH 2321. (0 Hours)**

Provides small-group discussion format to cover material in MATH2321.

**MATH2331. Linear Algebra. (4 Hours)**

Uses the Gauss-Jordan elimination algorithm to analyze and find bases for subspaces such as the image and kernel of a linear transformation. Covers the geometry of linear transformations: orthogonality, the Gram-Schmidt process, rotation matrices, and least squares fit. Examines diagonalization and similarity, and the spectral theorem and the singular value decomposition. Is primarily for math and science majors; applications are drawn from many technical fields. Computation is aided by the use of software such as Maple or MATLAB, and graphing calculators.

**Prerequisite(s): **MATH1342 with a minimum grade of D- or MATH1242 with a minimum grade of D- or MATH1252 with a minimum grade of D- or CS1800 with a minimum grade of D-

**MATH2341. Differential Equations and Linear Algebra for Engineering. (4 Hours)**

Studies ordinary differential equations, their applications, and techniques for solving them including numerical methods (through computer labs using MS Excel and MATLAB), Laplace transforms, and linear algebra. Topics include linear and nonlinear first- and second-order equations and applications include electrical and mechanical systems, forced oscillation, and resonance. Topics from linear algebra, such as matrices, row-reduction, vector spaces, and eigenvalues/eigenvectors, are developed and applied to systems of differential equations. Requires prior completion of MATH1342.

**MATH2342. Recitation for MATH 2341. (0 Hours)**

Provides small-group discussion format to cover material in MATH2341.

**MATH2990. Elective. (1-4 Hours)**

Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

**MATH2991. Research in Mathematics. (1-4 Hours)**

Offers an opportunity to conduct introductory-level research or creative endeavors under faculty supervision.

**MATH3000. Co-op and Experiential Learning Reflection Seminar 1. (1 Hour)**

Intended for math majors who have completed their first co-op assignment or other integrated experiential learning component of the NU Core. The goal is to examine the mathematical problems encountered in these experiences and relate them to courses already taken and to the student’s future program. Faculty members and other guests contribute to the discussion. Grades are determined by the student’s participation in the course and the completion of a final paper.

**MATH3081. Probability and Statistics. (4 Hours)**

Focuses on probability theory. Topics include sample space; conditional probability and independence; discrete and continuous probability distributions for one and for several random variables; expectation; variance; special distributions including binomial, Poisson, and normal distributions; law of large numbers; and central limit theorem. Also introduces basic statistical theory including estimation of parameters, confidence intervals, and hypothesis testing.

**Prerequisite(s): **MATH1342 with a minimum grade of D- or MATH1252 with a minimum grade of D- or MATH1242 with a minimum grade of D-

**Attribute(s): ** NUpath Analyzing/Using Data

**MATH3082. Recitation for MATH 3081. (0 Hours)**

Provides small-group discussion format to cover material in MATH3081.

**MATH3090. Exploration of Modern Mathematics. (4 Hours)**

Offers students a research-minded, elementary, and intuitive introduction to the interplay between algebra, geometry, analysis, and topology using an interactive and experimental approach. Intended for math majors, math combined majors, and students pursuing a math minor; all others should obtain permission of instructor.

**Prerequisite(s): **MATH1242 with a minimum grade of D- or MATH1252 with a minimum grade of D- or MATH1342 with a minimum grade of D-

**MATH3150. Real Analysis. (4 Hours)**

Provides the theoretical underpinnings of calculus and the advanced study of functions. Emphasis is on precise definitions and rigorous proof. Topics include the real numbers and completeness, continuity and differentiability, the Riemann integral, the fundamental theorem of calculus, inverse function and implicit function theorems, and limits and convergence. Required of all mathematics majors.

**Prerequisite(s): **(MATH1365 with a minimum grade of D- ; MATH2331 with a minimum grade of D- ); (ENGL 1111 with a minimum grade of C or ENGL 1102 with a minimum grade of C or ENGW1111 with a minimum grade of C or ENGW1102 with a minimum grade of C )

**Attribute(s): ** NUpath Writing Intensive

**MATH3175. Group Theory. (4 Hours)**

Presents basic concepts and techniques of the group theory: symmetry groups, axiomatic definition of groups, important classes of groups (abelian groups, cyclic groups, additive and multiplicative groups of residues, and permutation groups), Cayley table, subgroups, group hom*omorphism, cosets, the Lagrange theorem, normal subgroups, quotient groups, and direct products. Studies structural properties of groups. Possible applications include geometry, number theory, crystallography, physics, and combinatorics.

**Prerequisite(s): **MATH2321 with a minimum grade of D- ; MATH2331 with a minimum grade of D-

**MATH3181. Advanced Probability and Statistics. (4 Hours)**

Focuses on probability theory needed to prepare students for research and advanced coursework in the physical and data sciences. Examples and homework problems come from physics, chemistry, biology, computer science, data science, and electrical engineering. Topics include sample spaces; conditional probability and independence; discrete and continuous probability distributions for one and for several random variables; expectation; variance; special distributions including binomial, Poisson, and normal distributions; law of large numbers; and the central limit theorem. Introduces basic statistical theory including estimation of parameters, confidence intervals, and hypothesis testing. This course is proof-based and emphasizes developing students' abilities in mathematical proof writing.

**Prerequisite(s): **MATH2321 with a minimum grade of D-

**MATH3275. Advanced Group Theory. (4 Hours)**

Serves as an accelerated introduction to the theory of groups, intended for students who wish to take a more advanced version of MATH3175. Prior knowledge of group theory is not assumed. Introduces hom*omorphisms, subgroups, normal subgroups, quotient groups, and group actions, illustrated with a variety of examples. Subsequent topics include the class equation, simple groups, the Sylow theorems, and their applications to the classification of finite simple groups. Discusses classical matrix groups, with an emphasis on SU(2) and SO(3) as fundamental examples, and introduces the notion of a Lie algebra. Develops representation theory of finite groups and its correspondence to the representation theory of compact Lie groups sketched, again using SU(2) as an example. Students not meeting course prerequisites may seek permission of instructor.

**Prerequisite(s): **MATH1365 with a minimum grade of B ; MATH2331 with a minimum grade of B

**MATH3331. Differential Geometry. (4 Hours)**

Studies differential geometry, focusing on curves and surfaces in 3D space. The material presented here can serve as preparation for a more advanced course in Riemannian geometry or differential topology.

**Prerequisite(s): **MATH2321 with a minimum grade of D- ; MATH2331 with a minimum grade of D-

**MATH3341. Dynamical Systems. (4 Hours)**

Studies dynamical systems and their applications as they arise from differential equations. Solutions are obtained and analyzed as parameterized curves in the plane and used as a means of understanding the evolution of physical processes. Applications include conservative systems, predator-prey interactions, and cooperation and competition of species.

**Prerequisite(s): **MATH2341 with a minimum grade of D-

**MATH3527. Number Theory 1. (4 Hours)**

Introduces number theory. Topics include linear diophantine equations, congruences, design of magic squares, Fermat’s little theorem, Euler’s formula, Euler’s phi function, computing powers and roots in modular arithmetic, the RSA encryption system, primitive roots and indices, and the law of quadratic reciprocity. As time permits, may cover diophantine approximation and Pell’s equation, elliptic curves, points on elliptic curves, and Fermat’s last theorem.

**Prerequisite(s): **MATH1342 with a minimum grade of D- or MATH1242 with a minimum grade of D- or MATH1252 with a minimum grade of D-

**MATH3530. Numerical Analysis. (4 Hours)**

Considers various problems including roots of nonlinear equations; simultaneous linear equations: direct and iterative methods of solution; eigenvalue problems; interpolation; and curve fitting. Emphasizes understanding issues rather than proving theorems or coming up with numerical recipes.

**Prerequisite(s): **MATH2331 with a minimum grade of D- or MATH2341 with a minimum grade of D-

**MATH3533. Combinatorial Mathematics. (4 Hours)**

Introduces techniques of mathematical proofs including mathematical induction. Explores various techniques for counting such as permutation and combinations, inclusion-exclusion principle, recurrence relations, generating functions, Polya enumeration, and the mathematical formulations necessary for these techniques including elementary group theory and equivalence relations.

**Prerequisite(s): **MATH1342 with a minimum grade of D- or MATH1242 with a minimum grade of D- or MATH1252 with a minimum grade of D-

**MATH3535. Numerical Methods with Applications to Differential Equations. (4 Hours)**

Covers numerical methods to solve ordinary differential equations that are otherwise not solvable using exact methods and that are useful in a variety of applications drawn from classical areas of science and engineering. Studies examples classified as initial and boundary value problems from fluid mechanics and heat transfer. The topics are of fundamental importance in many branches of applied mathematics, physical sciences, and engineering. Possible topics also include the finite element method, which is very useful in structural analysis involving complex geometry.

**Prerequisite(s): **MATH2341 with a minimum grade of C-

**MATH3543. Dynamics, Chaos, and Fractals. (4 Hours)**

Introduces one-dimensional discrete real and complex dynamics, chaotic dynamics, and fractals, with an emphasis on computational and graphical exploration. Studies orbits and periodic iteration behavior of real and complex-valued function, attracting cycles, itineraries, symbolic dynamics, chaos, classical fractal constructions, Minkowski dimension, Julia sets, and the Mandelbrot set.

**Prerequisite(s): **MATH1342 with a minimum grade of D-

**MATH3545. Introduction to Graph Theory. (4 Hours)**

Offers a mathematical introduction to networks and graphs, which find applications in social and natural sciences. Introduces paths, cycles, trees, bipartite graphs, matchings, colorings, connectivity, and network flows. Discusses special cases of planar, Eulerian, and Hamiltonian graphs; Tait’s theorem; and possible advanced topics. Students who do not meet course prerequisites may seek permission of instructor.

**Prerequisite(s): **MATH1365 with a minimum grade of C- or MATH 2310 with a minimum grade of C- or MATH3533 with a minimum grade of C- or CS1800 with a minimum grade of C- or CS3800 with a minimum grade of C-

**MATH3560. Geometry. (4 Hours)**

Studies classical geometry and symmetry groups of geometric figures, with an emphasis on Euclidean geometry. Teaches how to formulate mathematical propositions precisely and how to construct and understand mathematical proofs. Provides a line between classical and modern geometry with the aim of preparing students for further study in group theory and differential geometry.

**Prerequisite(s): **MATH2331 with a minimum grade of D- or MATH2341 with a minimum grade of D-

**MATH3990. Elective. (1-4 Hours)**

Offers elective credit for courses taken at other academic institutions. May be repeated without limit.

**MATH4020. Research Capstone. (4 Hours)**

Offers students the experience of engaging in mathematical research that builds upon the math courses that they have taken and, possibly, their co-op assignments. Requires students to complete a research project of their own choosing. Focus is on the project and on the students presenting their work. Also requires students to write a reflection paper. Intended for juniors or seniors with experience or interest in mathematics research. Students who do not meet course prerequisites may seek permission of instructor.

**Prerequisite(s): **MATH3150 with a minimum grade of D- ; MATH3175 with a minimum grade of D-

**Attribute(s): ** NUpath Capstone Experience, NUpath Writing Intensive

**MATH4025. Applied Mathematics Capstone. (4 Hours)**

Emphasizes the use of a variety of methods—such as optimization, differential equations, probability, and statistics—to study problems that arise in epidemiology, finance, and other real-world settings. Course work includes assigned exercises, a long-term modeling project on a topic of the student’s choosing, and a reflection paper.

**Prerequisite(s): **MATH3081 with a minimum grade of D-

**Attribute(s): ** NUpath Capstone Experience, NUpath Writing Intensive

**MATH4525. Applied Analysis. (4 Hours)**

Demonstrates the applications of mathematics to interesting physical and biological problems. Methods are chosen from ordinary and partial differential equations, calculus of variations, Laplace transform, perturbation theory, special functions, dimensional analysis, asymptotic analysis, and other techniques of applied mathematics.

**Prerequisite(s): **MATH2321 with a minimum grade of D- ; MATH2331 with a minimum grade of D- ; (MATH2341 with a minimum grade of D- or MATH 2351 with a minimum grade of D- )

**MATH4527. Number Theory 2. (4 Hours)**

Continues MATH3527. Topics include Diophantine approximation, the Gaussian integers, irrational numbers and transcendental numbers, nonlinear polynomial congruences, systems of linear congruences, mobius inversion, elliptic curves, modular curves, modular forms, and L-functions.

**Prerequisite(s): **(MATH3527 with a minimum grade of D- or MATH4575 with a minimum grade of D- ); MATH3175 with a minimum grade of D-

**MATH4541. Advanced Calculus. (4 Hours)**

Offers a deeper and more generalized look at the ideas and objects of study of calculus. Topics include the generalized calculus of n-space, the inverse and implicit function theorems, differential forms and general Stokes-type theorems, geometry of curves and surfaces, and special functions.

**Prerequisite(s): **MATH2321 with a minimum grade of D- ; MATH2331 with a minimum grade of D-

**MATH4545. Fourier Series and PDEs. (4 Hours)**

Provides a first course in Fourier series, Sturm-Liouville boundary value problems, and their application to solving the fundamental partial differential equations of mathematical physics: the heat equation, the wave equation, and Laplace’s equation. Green’s functions are also introduced as a means of obtaining closed-form solutions.

**Prerequisite(s): **MATH 2351 with a minimum grade of D- or MATH2341 with a minimum grade of D-

**MATH4555. Complex Variables. (4 Hours)**

Provides an introduction to the analysis of functions of a complex variable. Starting with the algebra and geometry of complex numbers, basic derivative and contour integral properties are developed for elementary algebraic and transcendental functions as well as for other analytic functions and functions with isolated singularities. Power and Laurent series representations are given. Classical integral theorems, residue theory, and conformal mapping properties are studied. Applications of harmonic functions are presented as time permits.

**Prerequisite(s): **MATH2321 with a minimum grade of D-

**MATH4565. Topology. (4 Hours)**

Introduces the student to fundamental notions of topology. Introduces basic set theory, then covers the foundations of general topology (axioms for a topological space, continuous functions, homeomorphisms, metric spaces, the subspace, product and quotient topologies, connectedness, compactness, and the Hausdorff condition). Also introduces algebraic and geometric topology (hom*otopy, covering spaces, fundamental groups, graphs, surfaces, and manifolds) and applications. Other topics are covered if time permits.

**Prerequisite(s): **MATH3150 with a minimum grade of D-

**MATH4570. Matrix Methods in Data Analysis and Machine Learning. (4 Hours)**

Introduces concepts and methods of linear algebra for understanding and creating machine learning and deep learning algorithms. Topics include various matrix factorizations, symmetric positive definite matrices, inner product spaces, matrix calculus, applications to probability and statistics, and optimization in high-dimensional spaces. Explores the mathematics behind data analysis, machine learning, and deep learning, including gradient descents, Newton's methods, principal components analysis, linear regression and linear methods in classification, neural networks, and convolutional neural networks. Offers students opportunities to learn and practice Python skills with labs and the final project.

**Prerequisite(s): **MATH2331 with a minimum grade of C- or MATH2341 with a minimum grade of C-

**MATH4571. Advanced Linear Algebra. (4 Hours)**

Provides a more detailed study of linear transformations and matrices: LU factorization, QR factorization, Spectral theorem and singular value decomposition, Jordan form, positive definite matrices, quadratic forms, partitioned matrices, and norms and numerical issues. Topics and emphasis change from year to year.

**Prerequisite(s): **MATH2331 with a minimum grade of D-

**MATH4575. Introduction to Cryptography. (4 Hours)**

Presents the mathematical foundations of cryptology, beginning with the study of divisibility of integers, the Euclidian Algorithm, and an analysis of the Extended Euclidian Algorithm. Includes a short study of groups, semigroups, residue class rings, fields, Fermat’s Little Theorem, Chinese Remainder Theorem, polynomials over fields, and the multiplicative group of residues modulo a prime number. Introduces fundamental notions used to describe encryption schemes together with examples, which include affine linear ciphers and cryptanalysis and continues with probability and perfect secrecy. Presents the Data Encryption Standard (DES) and culminates in the study of the Advanced Encryption Standard (AES), the standard encryption scheme in the United States since 2001.

**Prerequisite(s): **MATH2331 with a minimum grade of D- or MATH3175 with a minimum grade of D- or MATH3527 with a minimum grade of D-

**MATH4576. Rings and Fields. (4 Hours)**

Introduces commutative rings, ideals, integral domains, fields, and the theory of extension fields. Topics include Gaussian integers, Galois groups, and the fundamental theorem of Galois theory. Applications include the impossibility of angle-trisection and the general insolvability of fifth- and higher-degree polynomials. Other topics are covered as time permits.

**Prerequisite(s): **MATH3175 with a minimum grade of D-

**MATH4577. Commutative Algebra. (4 Hours)**

Introduces the basics of commutative algebra. Emphasizes rigorously building the mathematical background needed for studying this subject in more depth. Seeks to prepare students for more advanced classes in algebraic geometry, robotics, invariant theory of finite groups, and cryptography. Covers geometry, algebra, and algorithms; Grobner bases; elimination theory; the algebra-geometry dictionary; robotics and automatic geometric theorem proving.

**Prerequisite(s): **(MATH2331 with a minimum grade of C+ ; MATH1365 with a minimum grade of C+ ) or MATH3175 with a minimum grade of C+ or MATH4576 (may be taken concurrently) with a minimum grade of C+

**MATH4581. Statistics and Stochastic Processes. (4 Hours)**

Continues topics introduced in MATH3081. The first part of the course covers classical procedures of statistics including the t-test, linear regression, and the chi-square test. The second part provides an introduction to stochastic processes with emphasis on Markov chains, random walks, and Brownian motion, with applications to modeling and finance.

**Prerequisite(s): **MATH3081 with a minimum grade of D-

**MATH4606. Mathematical and Computational Methods for Physics. (4 Hours)**

Covers advanced mathematical methods topics that are commonly used in the physical sciences, such as complex calculus, Fourier transforms, special functions, and the principles of variational calculus. Applies these methods to computational simulation and modeling exercises. Introduces basic computational techniques and numerical analysis, such as Newton’s method, Monte Carlo integration, gradient descent, and least squares regression. Uses a simple programming language, such as MATLAB, for the exercises.

**Prerequisite(s): **PHYS2303 with a minimum grade of D- ; MATH2321 with a minimum grade of D- ; (MATH2341 with a minimum grade of D- or MATH 2351 with a minimum grade of D- )

**MATH4681. Probability and Risks. (4 Hours)**

Reviews main probability and statistics concepts from the point of view of decision risks in actuarial and biomedical contexts, including applications of normal approximation for evaluating statistical risks. Also examines new topics, such as distribution of extreme values and nonparametric statistics with examples. May be especially useful for students preparing for the first actuarial exam on probability and statistics.

**Prerequisite(s): **MATH3081 with a minimum grade of D-

**MATH4682. Theory of Interest and Basics of Life Insurance 1. (4 Hours)**

Reviews basic financial instruments in the presence of interest rates, including the measurement of interest and problems in interest (equations of value, basic and more general annuities, yield rates, amortization schedules, bonds and other securities). Examines numerous practical applications. Also introduces problems of life insurance with examples. May be especially useful for students preparing for the second actuarial exam on theory of interest.

**Prerequisite(s): **MATH3081 with a minimum grade of D-

**MATH4683. Financial Derivatives. (4 Hours)**

Presents the mathematical basis of actuarial models and their application to insurance and other financial risks. Includes but is not limited to financial derivatives such as options and futures. Techniques and applications may be useful for students preparing for actuarial Exam 3F (Society of Actuaries Exam MFE).

**Prerequisite(s): **MATH4581 with a minimum grade of D-

**MATH4684. Theory of Interest and Basics of Life Insurance 2. (4 Hours)**

Reviews actuarial models for life insurance, including survival models, life tables, life insurance, life annuities, premium and policy values, multiple state models, joint-life and last survivor models, pensions, and emerging costs for life insurance. Designed to be especially useful for students preparing for the fourth actuarial exam, LTAM (Long-Term Actuarial Mathematics), of the Society of Actuaries.

**Prerequisite(s): **MATH4682 with a minimum grade of C-

**MATH4970. Junior/Senior Honors Project 1. (4 Hours)**

Focuses on in-depth project in which a student conducts research or produces a product related to the student’s major field. Combined with Junior/Senior Project 2 or college-defined equivalent for 8-credit honors project. May be repeated without limit.

**Prerequisite(s): **MATH3081 with a minimum grade of D-

**MATH4971. Junior/Senior Honors Project 2. (4 Hours)**

Focuses on second semester of in-depth project in which a student conducts research or produces a product related to the student’s major field. May be repeated without limit.

**Prerequisite(s): **MATH4970 with a minimum grade of D-

**MATH4990. Elective. (1-4 Hours)**

**MATH4991. Research. (4 Hours)**

Offers an opportunity to conduct research under faculty supervision.

**Attribute(s): ** NUpath Integration Experience

**MATH4992. Directed Study. (1-4 Hours)**

Offers independent work under the direction of members of the department on a chosen topic. Course content depends on instructor. May be repeated without limit.

**MATH4994. Internship. (4 Hours)**

Offers students an opportunity for internship work. May be repeated without limit.

**Attribute(s): ** NUpath Integration Experience

**MATH4996. Experiential Education Directed Study. (4 Hours)**

Draws upon the student’s approved experiential activity and integrates it with study in the academic major. Restricted to mathematics majors who are using it to fulfill their experiential education requirement; for these students it may count as a mathematics elective, subject to approval by instructor and adviser. May be repeated without limit.

**Attribute(s): ** NUpath Integration Experience, NUpath Writing Intensive

**MATH5101. Analysis 1: Functions of One Variable. (4 Hours)**

Offers a rigorous, proof-based introduction to mathematical analysis and its applications. Topics include metric spaces, convergence, compactness, and connectedness; continuous and uniformly continuous functions; derivatives, the mean value theorem, and Taylor series; Riemann integration and the fundamental theorem of calculus; interchanging limit operations; sequences of functions and uniform convergence; Arzelà-Ascoli and Stone-Weierstrass theorems; inverse and implicit function theorems; successive approximations and existence/uniqueness for ordinary differential equations; linear operators on finite-dimensional vector spaces and applications to systems of ordinary differential equations. Provides a series of computer projects that further develop the connections between theory and applications. Requires permission of instructor and head advisor for undergraduate students.

**MATH5102. Analysis 2: Functions of Several Variables. (4 Hours)**

Continues MATH5101. Studies basics of analysis in several variables. Topics include derivative and partial derivatives; the contraction principle; the inverse function and implicit function theorems; derivatives of higher order; Taylor formula in several variables; differentiation of integrals depending on parameters; integration of functions of several variables; change of variables in integrals; differential forms and their integration over simplexes and chains; external multiplication of forms; differential of forms; Stokes’ formula; set functions; Lebesgue measure; measure spaces; measurable functions; integration; comparison with the Riemann integral; L2 as a Hilbert space; and Parseval theorem and Riesz-Fischer theorem. Requires permission of instructor and head advisor for undergraduate students.

**MATH5110. Applied Linear Algebra and Matrix Analysis. (4 Hours)**

Offers a robust introduction to the basic results of linear algebra on real and complex vector spaces with applications to differential equations and Markov chains. Introduces theoretical results along the way, along with matrix analysis, eigenvalue analysis, and spectral decomposition. Includes a significant computational component, focused on applications of linear algebra to mathematical modeling.

**MATH5111. Algebra 1. (4 Hours)**

Discusses fundamentals of the theory of groups and some applications in Galois theory. Topics may include quotient groups and isomorphism theorems; group actions and Sylow theory; simplicity and solvability; permutations and the simplicity of the higher alternating groups; fields and polynomial rings; splitting fields; the Galois correspondence; computations of Galois groups; and applications of Galois theory, including non-solvability of polynomials by radicals.

**MATH5112. Algebra 2. (4 Hours)**

Provides a comprehensive introduction to commutative algebra: rings and modules. Topics in commutative ring theory include ideals, prime and maximal ideals, ring hom*omorphisms, Euclidean domains, principal ideal domains, unique factorization domains, fields of quotients, polynomial rings, irreducibility criteria, and the Chinese Remainder Theorem. Topics in module theory include module hom*omorphisms, the structure theorem for modules over a PID and applications, and the Jordan and rational canonical forms.

**MATH5121. Topology 1. (4 Hours)**

Provides an introduction to topology, starting with the basics of point set topology (topological space, continuous maps, homeomorphisms, compactness and connectedness, and identification spaces). Moves on to the basic notions of algebraic and combinatorial topology, such as hom*otopy equivalences, fundamental group, Seifert-VanKampen theorem, simplicial complexes, classification of surfaces, and covering space theory. Ends with a brief introduction to simplicial hom*ology and knot theory. Requires permission of instructor and head advisor for undergraduate students.

**Prerequisite(s): **MATH5111 with a minimum grade of C-

**MATH5122. Geometry 1. (4 Hours)**

Covers differentiable manifolds, such as tangent bundles, tensor bundles, vector fields, Frobenius integrability theorem, differential forms, Stokes’ theorem, and de Rham cohom*ology; and curves and surfaces, such as elementary theory of curves and surfaces in R3, fundamental theorem of surfaces in R3, surfaces with constant Gauss or mean curvature, and Gauss-Bonnet theorem for surfaces. Requires permission of instructor and head advisor for undergraduate students.

**Prerequisite(s): **MATH5101 with a minimum grade of C- ; MATH5111 with a minimum grade of C-

**MATH5131. Introduction to Mathematical Methods and Modeling. (4 Hours)**

Presents mathematical methods emphasizing applications. Uses ordinary and partial differential equations to model the evolution of real-world processes. Topics chosen illustrate the power and versatility of mathematical methods in a variety of applied fields and include population dynamics, drug assimilation, epidemics, spread of pollutants in environmental systems, competing and cooperating species, and heat conduction. Requires students to complete a math-modeling project. Requires undergraduate-level course work in ordinary and partial differential equations.

**Attribute(s): ** NUpath Capstone Experience, NUpath Writing Intensive

**MATH5352. Quantum Computation and Information. (4 Hours)**

Introduces the foundations of quantum computation and information, including finite dimensional quantum mechanics, gates and circuits, quantum algorithms, quantum noise, and error-correcting codes. Assumes a working knowledge of linear algebra and matrix analysis, but no prior experience with quantum theory or algorithms is required.

**MATH6000. Professional Development for Co-op. (0 Hours)**

Introduces the cooperative education program. Offers students an opportunity to develop job-search and career-management skills; to assess their workplace skills, interests, and values and to discuss how they impact personal career choices; to prepare a professional resumé; and to learn proper interviewing techniques. Explores career paths, choices, professional behaviors, work culture, and career decision making.

**MATH6954. Co-op Work Experience - Half-Time. (0 Hours)**

Provides eligible students with an opportunity for work experience. May be repeatedwithout limit.

**MATH6955. Co-op Work Experience Abroad - Half Time. (0 Hours)**

Provides eligible students with an opportunity for work experience abroad.

**MATH6961. Internship. (1-4 Hours)**

Offers students an opportunity for internship work. May be repeated without limit.

**MATH6962. Elective. (1-4 Hours)**

**MATH6964. Co-op Work Experience. (0 Hours)**

Provides eligible students with an opportunity for work experience. May be repeated without limit.

**MATH6965. Co-op Work Experience Abroad. (0 Hours)**

Provides eligible students with an opportunity for work experience abroad. May be repeated without limit.

**MATH7202. Partial Differential Equations 1. (4 Hours)**

Introduces partial differential equations, their theoretical foundations, and their applications, which include optics, propagation of waves (light, sound, and water), electric field theory, and diffusion. Topics include first-order equations by the method of characteristics; linear, quasilinear, and nonlinear equations; applications to traffic flow and geometrical optics; principles for higher-order equations; power series and Cauchy-Kowalevski theorem; classification of second-order equations; linear equations and generalized solutions; wave equations in various space dimensions; domain of dependence and range of influence; Huygens’ principle; conservation of energy, dispersion, and dissipation; Laplace’s equation; mean values and the maximum principle; the fundamental solution, Green’s functions, and Poisson kernels; applications to physics; properties of harmonic functions; the heat equation; eigenfunction expansions; the maximum principle; Fourier transform and the Gaussian kernel; regularity of solutions; scale invariance and the similarity method; Sobolev spaces; and elliptic regularity.

**MATH7203. Numerical Analysis 1. (4 Hours)**

Introduces methods and techniques used in contemporary number crunching. Covers floating-point computations involving scalars, vectors, and matrices; solvers for sparse and dense linear systems; matrix decompositions; integration of functions and solutions of ordinary differential equations (ODEs); and Fast Fourier transform. Focuses on finding solutions to practical, real-world problems. Knowledge of programming in Matlab is assumed. Knowledge of other programming languages would be good but not required.

**MATH7205. Numerical Analysis 2. (4 Hours)**

Covers numerical analysis and scientific computation. Topics include numerical solutions of ordinary differential equations (ODEs) and one-dimensional boundary value problems; solving partial differential equations (PDEs) using modal expansions, finite-difference, and finite-element methods; stability of PDE algorithms; elementary computational geometry and mesh generation; unconstrained optimization with application to data modeling; and constrained optimization of convex functions: linear and quadratic programming. Focuses on techniques commonly used for data fitting and solving problems from engineering and physical science. Knowledge of programming in MATLAB is assumed. Knowledge of other programming languages beneficial but not required.

**MATH7221. Topology 2. (4 Hours)**

Continues MATH5121. Introduces hom*ology and cohom*ology theory. Studies singular hom*ology, hom*ological algebra (exact sequences, axioms), Mayer-Vietoris sequence, CW-complexes and cellular hom*ology, calculation of hom*ology of cellular spaces, and hom*ology with coefficients. Moves on to cohom*ology theory, universal coefficients theorems, Bockstein hom*omorphism, Knnneth formula, cup and cap products, Hopf invariant, Borsuk-Ulam theorem, and Brouwer and Lefschetz-Hopf fixed-point theorems. Ends with a study of duality in manifolds including orientation bundle, Poincaré duality, Lefschetz duality, Alexander duality, Euler class, Lefschetz numbers, Gysin sequence, intersection form, and signature.

**MATH7223. Riemannian Optimization. (4 Hours)**

Offers a self-contained introduction to optimization on smooth manifolds. Covers both theoretical foundations and practical computational methods that students can apply to their own work. Introduces the theory of Riemannian geometry. Emphasizes those elements that are relevant for the construction of optimization algorithms (tensor fields, metrics, connections, geodesics, retractions, and transporters). Applies this geometric machinery to devise first- and second-order smooth optimization methods on generic Riemannian manifolds. Focuses on the development of practical computational techniques, with applications to robotics, computer vision, and machine learning.

**MATH7233. Graph Theory. (4 Hours)**

Covers fundamental concepts in graph theory. Topics include adjacency and incidence matrices, paths and connectedness, and vertex degrees and counting; trees and distance including properties of trees, distance in graphs, spanning trees, minimum spanning trees, and shortest paths; matchings and factors including matchings in bipartite graphs, Hall’s matching condition, and min-max theorems; connectivity, such as vertex connectivity, edge connectivity, k-connected graphs, and Menger’s theorem; network flows including maximum network flow, and integral flows; vertex colorings, such as upper bounds, Brooks, theorem, graphs with large chromatic number, and critical graphs; Eulerian circuits and Hamiltonian cycles including Euler’s theorem, necessary conditions for Hamiltonian cycles, and sufficient conditions; planar graphs including embeddings and Euler’s formula, characterization of planar graphs (Kuratowski’s theorem); and Ramsey theory including Ramsey’s theorem, Ramsey numbers, and graph Ramsey theory.

**MATH7234. Optimization and Complexity. (4 Hours)**

Offers theory and methods of maximizing and minimizing solutions to various types of problems. Studies combinatorial problems including mixed integer programming problems (MIP); pure integer programming problems (IP); Boolean programming problems; and linear programming problems (LP). Topics include convex subsets and polyhedral subsets of n-space; relationship between an LP problem and its dual LP problem, and the duality theorem; simplex algorithm, and Kuhn-Tucker conditions for optimality for nonlinear functions; and network problems, such as minimum cost and maximum flow-minimum cut. Also may cover complexity of algorithms; problem classes P (problems with polynomial-time algorithms) and NP (problems with nondeterministic polynomial-time algorithms); Turing machines; and NP-completeness of traveling salesman problem and other well-known problems.

**MATH7241. Probability 1. (4 Hours)**

Offers an introductory course in probability theory, with an emphasis on problem solving and modeling. Starts with basic concepts of probability spaces and random variables, and moves on to the classification of Markov chains with applications. Other topics include the law of large numbers and the central limit theorem, with applications to the theory of random walks and Brownian motion.

**MATH7243. Machine Learning and Statistical Learning Theory 1. (4 Hours)**

Introduces both the mathematical theory of learning and the implementation of modern machine-learning algorithms appropriate for data science. Modeling everything from social organization to financial predictions, machine-learning algorithms allow us to discover information about complex systems, even when the underlying probability distributions are unknown. Algorithms discussed include regression, decision trees, clustering, and dimensionality reduction. Offers students an opportunity to learn the implications of the mathematical choices underpinning the use of each algorithm, how the results can be interpreted in actionable ways, and how to apply their knowledge through the analysis of a variety of data sets and models.

**MATH7301. Functional Analysis. (4 Hours)**

Provides an introduction to essential results of functional analysis and some of its applications. The main abstract facts can be understood independently. Proof of some important basic theorems about Hilbert and Banach spaces (Hahn-Banach theorem, open mapping theorem) are omitted, in order to allow more time for applications of the abstract techniques, such as compact operators; Peter-Weyl theorem for compact groups; spectral theory; Gelfand’s theory of commutative C*-algebras; mean ergodic theorem; Fourier transforms and Sobolev embedding theorems; and distributions and elliptic operators.

**Prerequisite(s): **MATH5102 with a minimum grade of C- or MATH5102 with a minimum grade of C-

**MATH7302. Partial Differential Equations 2. (4 Hours)**

Covers advanced topics in linear and nonlinear partial differential equations. Topics include pseudodifferential operators and elliptic regularity; elements of microlocal analysis; propagation of singularities; spectral theory of elliptic operators; variational principle; the Schrödinger equation and its meaning in quantum mechanics; parabolic equations and their role in diffusion processes; hyperbolic equations and wave propagation; the Cauchy problem for hyperbolic equations; elements of scattering theory; nonlinear elliptic equations in Riemannian geometry, including the Yamabe problem, prescribed scalar curvature problem, and Einstein-Kähler metrics; the Navier-Stokes equations in hydrodynamics; simplest properties and open problems in nonlinear hyperbolic equations and shock waves; the Korteweg-de Vries equation and its relation to inverse scattering problems; solitons and algebro-geometric solutions.

**Prerequisite(s): **MATH5101 with a minimum grade of C-

**MATH7303. Complex Manifolds. (4 Hours)**

Introduces complex manifolds. Discusses the elementary local theory in several variables including Cauchy’s integral formula, Hartog’s extension theorem, the Weierstrass preparation theorem, and Riemann’s extension theorem. The global theory includes the definition of complex manifolds, sheaf cohom*ology, line bundles and divisors, Kodaira’s vanishing theorem, Kodaira’s embedding theorem, and Chow’s theorem on complex subvarieties of projective space. Special examples of dimension one and two illustrate the general theory.

**MATH7311. Commutative Algebra. (4 Hours)**

Introduces some of the main tools of commutative algebra, particularly those tools related to algebraic geometry. Topics include prime ideals, localization, and integral extensions; primary decomposition; Krull dimension; chain conditions, and Noetherian and Artinian modules; and additional topics from ring and module theory as time permits.

**Prerequisite(s): **MATH5111 with a minimum grade of C-

**MATH7315. Algebraic Number Theory. (4 Hours)**

Covers rings of integers, Dedekind domains, factorization of ideals, ramification, and the decomposition and inertia subgroups; units in rings of integers, Minkowski’s geometry of numbers, and Dirichlet’s unit theorem; and class groups, zeta functions, and density sets of primes.

**Prerequisite(s): **MATH5111 with a minimum grade of C-

**MATH7316. Lie Algebras. (4 Hours)**

Introduces notions of solvable and nilpotent Lie algebras. Covers semisimple Lie algebras: Killing form criterion, Cartan decomposition. root systems, Weyl groups, Dynkin diagrams, weights. Also dicusses universal enveloping algebra, PBW theorem, representations of semisimple Lie algebras, weight spaces, highest weight modules, multiplicities, characters, Weyl character formula.

**MATH7317. Modern Representation Theory. (4 Hours)**

Introduces students to modern techniques of representation theory, including those coming from geometry and mathematical physics. Covers applications of geometry to the representation theory of semisimple Lie algebras, algebraic groups and related algebraic objects, questions related to the representation theory of infinite dimensional Lie algebras, quantum groups, and p-adic groups, as well as category theory methods in representation theory.

**Prerequisite(s): **MATH5111 with a minimum grade of C-

**MATH7320. Modern Algebraic Geometry. (4 Hours)**

Introduces students to modern techniques of algebraic geometry, including those coming from Lie theory, symplectic and differential geometry, complex analysis, and number theory. Covers subjects related to invariant theory, hom*ological algebra questions of algebraic geometry, including derived categories and complex analytic, differential geometric, and arithmetic aspects of the geometry of algebraic varieties. Students not meeting course prerequisites or restrictions may seek permission of instructor.

**Prerequisite(s): **MATH 7314 with a minimum grade of C- or MATH 7361 with a minimum grade of C-

**MATH7321. Topology 3. (4 Hours)**

Continues MATH7221 and studies classical algebraic topology and its applications. Introduces hom*otopy theory. Topics include higher hom*otopy groups, cofibrations, fibrations, hom*otopy sequences, hom*otopy groups of Lie groups and hom*ogeneous spaces, Hurewicz theorem, Whitehead theorem, Eilenberg-MacLane spaces, obstruction theory, Postnikov towers, and spectral sequences.

**Prerequisite(s): **MATH7221 with a minimum grade of C-

**MATH7339. Machine Learning and Statistical Learning Theory 2. (4 Hours)**

Continues MATH7243. Further covers theory and methods for regression and classification, along with more advanced topics in machine learning, statistical learning, and deep learning. Reviews the basics of machine learning in a broader and deeper way. Additional topics are drawn from smoothing methods, clustering, latent variable models, mixture models, Markov decision process and reinforcement learning, and neural networks. Discusses recent research papers on image classification and segmentation, generative adversarial network, neural style transfer, natural language processing, and topological data analysis. Uses theory, models, and algorithms to analyze a variety of datasets.

**Prerequisite(s): **CS6140 with a minimum grade of C- or DS5220 with a minimum grade of C- or EECE5644 with a minimum grade of C- or MATH7243 with a minimum grade of C-

**MATH7340. Statistics for Bioinformatics. (4 Hours)**

Introduces the concepts of probability and statistics used in bioinformatics applications, particularly the analysis of microarray data. Uses statistical computation using the open-source R program. Topics include maximum likelihood; Monte Carlo simulations; false discovery rate adjustment; nonparametric methods, including bootstrap and permutation tests; correlation, regression, ANOVA, and generalized linear models; preprocessing of microarray data and gene filtering; visualization of multivariate data; and machine-learning techniques, such as clustering, principal components analysis, support vector machine, neural networks, and regression tree.

**MATH7341. Probability 2. (4 Hours)**

Continues MATH7241. Studies probability theory, with an emphasis on its use in modeling and queueing theory. Starts with basic properties of exponential random variables, and then applies this to the study of the Poisson process. Queueing theory forms the bulk of the course, with analysis of single-server queues, multiserver queues, and networks of queues. Also includes material on continuous-time Markov processes, renewal theory, and Brownian motion.

**Prerequisite(s): **MATH7241 with a minimum grade of C- or IE6200 with a minimum grade of C-

**MATH7342. Mathematical Statistics. (4 Hours)**

Introduces mathematical statistics, emphasizing theory of point estimations. Topics include parametric estimations, minimum variance unbiased estimators, sufficiency and completeness, and Rao-Blackwell theorem; asymptotic (large sample) theory, maximum likelihood estimator (MLE), consistency of MLE, asymptotic theory of MLE, and Cramer-Rao bound; and hypothesis testing, Neyman-Pearson fundamental lemma, and likelihood ratio test.

**MATH7343. Applied Statistics. (4 Hours)**

Designed as a basic introductory course in statistical methods for graduate students in mathematics as well as various applied sciences. Topics include descriptive statistics, inference for population means, analysis of variance, nonparametric methods, and linear regression. Studies how to use the computer package SPSS, doing statistical analysis and interpreting computer outputs.

**MATH7344. Regression, ANOVA, and Design. (4 Hours)**

Discusses one-sample and two-sample tests; one-way ANOVA; factorial and nested designs; Cochran’s theorem; linear and nonlinear regression analysis and corresponding experimental design; analysis of covariance; and simultaneous confidence intervals.

**MATH7349. Stochastic Calculus and Introduction to No-Arbitrage Finance. (4 Hours)**

Introduces no-arbitrage discounted contingent claims and methods of their optimization in discrete and continuous time for a finite fixed or random horizon. Establishes the relation of no-arbitrage to the martingale calculus. Introduces stochastic differential equations and corresponding PDE describing functionals of their solutions. Presents examples of contingent claims (such as options) evaluation including the Black-Scholes formula.

**Prerequisite(s): **MATH7342 with a minimum grade of C- or MATH7343 with a minimum grade of C-

**MATH7351. Mathematical Methods of Classical Mechanics. (4 Hours)**

Overviews the mathematical formulation of classical mechanics. Topics include Hamilton’s principle and Lagrange’s equations; solution of the two-body central force problem; rigid body rotation and Euler’s equations; the spinning top; Hamilton’s equations; the Poisson bracket; Liouville’s theorem; and canonical transformations.

**MATH7352. Mathematical Methods of Quantum Mechanics. (4 Hours)**

Introduces the basics of quantum mechanics for mathematicians. Introduces the von Neumann’s axiomatics of quantum mechanics with measurements in the first part of the course. Discusses the notions of observables and states, as well as the connections between the quantum and the classical mechanics. The second (larger) part is dedicated to some concrete quantum mechanical problems, such as harmonic oscillator, one-dimensional problems of quantum mechanics, radial Schr÷dinger equation, and the hydrogen atom. The third part deals with more advanced topics, such as perturbation theory, scattering theory, and spin. Knowledge of functional analysis and classical mechanics recommended.

**Prerequisite(s): **(MATH5102 with a minimum grade of C- or MATH5102 with a minimum grade of D- ); (MATH5111 with a minimum grade of C- or MATH5111 with a minimum grade of D- )

**MATH7359. Elliptic Curves and Modular Forms. (4 Hours)**

Introduces elliptic curves and modular forms. Examines elliptic curves as algebraic varieties over the complex numbers, finite fields, and local and global fields. Related topics include the j-invariant, the Tate module and the Weil pairing, zeta functions and the Weil conjectures, and the Mordell-Weil theorem. Modular forms are defined on moduli spaces of elliptic curves. Related topics include Eisenstein series, cusp forms, congruence subgroups of SL2(Z), modularity and the Taniyama-Shimura conjecture, and Fermat’s Last Theorem.

**Prerequisite(s): **MATH5111 with a minimum grade of C- or MATH5112 with a minimum grade of C-

**MATH7362. Topics in Algebra. (4 Hours)**

Focuses on various advanced topics in algebra, the specific subject matter depending on the interests of the instructor and of the students. Topics may include hom*ological algebra, commutative algebra, representation theory, or combinatorial aspects of commutative algebra. May be repeated without limit.

**MATH7363. Topics in Algebraic Geometry. (4 Hours)**

Focuses on various advanced topics in algebraic geometry, the specific subject matter depending on the interests of the instructor and of the students. Topics may include integrable systems, cohom*ology theory of algebraic schemes, study of singularities, geometric invariant theory, and flag varieties and Schubert varieties. May be repeated without limit.

**MATH7364. Topics in Representation Theory. (4 Hours)**

Offers topics in the representation theory of the classical groups, topics vary according to the interest of the instructor and students. Topics may include root systems, highest weight modules, Verma modules, Weyl character formula, Schur commutator lemma, Schur functors and symmetric functions, and Littlewood-Richardson rule. May be repeated up to five times.

**MATH7371. Morse Theory. (4 Hours)**

Covers basic Morse theory for nondegenerate smooth functions, and applications to geodesics, Lie groups and symmetric spaces, Bott periodicity, Morse inequalities, and Witten deformation.

**Prerequisite(s): **(MATH5122 with a minimum grade of C- or MATH5122 with a minimum grade of D- ); MATH7221 with a minimum grade of C- ; MATH7301 with a minimum grade of C-

**MATH7374. Riemannian Geometry and General Relativity. (4 Hours)**

Introduces Riemannian and pseudo-Riemannian geometry with applications to general relativity. Topics include Riemannian and pseudo-Riemannian metrics, connections, geodesics, curvature tensor, Ricci curvature and scalar curvature, Einstein’s law of gravitation, the gravitational red shift, the Schwarzschild solution and black holes, and Einstein equations in the presence of matter and electromagnetic field.

**MATH7375. Topics in Topology. (4 Hours)**

Offers various advanced topics in algebraic and geometric topology, the subject matter depending on the instructor and the students. Topics may include Morse theory, fiber bundles and characteristic classes, topology of complex hypersurfaces, knot theory and low-dimensional topology, K-theory, and rational hom*otopy theory. May be repeated without limit.

**Prerequisite(s): **MATH5121 (may be taken concurrently) with a minimum grade of C-

**MATH7381. Topics in Combinatorics. (4 Hours)**

Offers various advanced topics in combinatorics, the subject matter depending on the instructor and the students. May be repeated without limit.

**Prerequisite(s): **(MATH5122 with a minimum grade of C- or MATH5122 with a minimum grade of D- ); MATH 7222 with a minimum grade of C-

**MATH7382. Topics in Probability. (4 Hours)**

Offers various advanced topics in probability and related areas. The specific subject matter depends on the interest of the instructor and students. May be repeated up to five times.

**MATH7721. Readings in Topology. (4 Hours)**

Offers a reading course to be arranged between an individual student and instructor on a topic of their mutual choice. May be repeated without limit.

**MATH7733. Readings in Graph Theory. (4 Hours)**

Offers a reading course to be arranged between an individual student and instructor on a topic of their mutual choice. May be repeated without limit.

**MATH7734. Readings in Algebra. (4 Hours)**

Offers a reading course to be arranged between an individual student and instructor on a topic of their mutual choice. May be repeated without limit.

**MATH7735. Readings in Algebraic Geometry. (4 Hours)**

**MATH7736. Readings in Discrete Geometry. (4 Hours)**

**MATH7741. Readings in Probability and Statistics. (4 Hours)**

**MATH7771. Readings in Geometry. (4 Hours)**

Offers topics in geometry that are beyond the ordinary undergraduate topics. Topics include the regular polytopes in dimensions greater than three, straight-edge and compass constructions in hyperbolic geometry, Penrose tilings, the geometry and algebra of the wallpaper, and three-dimensional Euclidean groups. May be repeated without limit.

**MATH7962. Elective. (1-4 Hours)**

**MATH8450. Research Seminar in Mathematics. (4 Hours)**

Introduces graduate students to current research in geometry, topology, mathematical physics, and in other areas of mathematics. Requires permission of instructor for undergraduate mathematics students. May be repeated without limit.

**MATH8984. Research. (1-4 Hours)**

Offers an opportunity to conduct research under faculty supervision. May be repeated without limit.

**MATH8986. Research. (0 Hours)**

Offers an opportunity to conduct full-time research under faculty supervision. May be repeated without limit.

**MATH9000. PhD Candidacy Achieved. (0 Hours)**

Indicates successful completion of the doctoral comprehensive exam.

**MATH9984. Research. (1-4 Hours)**

Offers an opportunity to conduct research under faculty supervision. May be repeated without limit.

**MATH9990. Dissertation Term 1. (0 Hours)**

Offers dissertation supervision by members of the department.

**Prerequisite(s): **MATH9000 with a minimum grade of S

**MATH9991. Dissertation Term 2. (0 Hours)**

Offers dissertation supervision by members of the department.

**Prerequisite(s): **MATH9990 with a minimum grade of S

**MATH9996. Dissertation Continuation. (0 Hours)**

Offers dissertation supervision by members of the department.

**Prerequisite(s): **MATH9991 with a minimum grade of S or Dissertation Check with a score of REQ